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ABSTRACT

Composite materials are involving in engineering applications at a growing speed,
due to their stiffer, stronger and lighter properties. This growth requires fast and powerful
numerical methods like Boundary Element Method (BEM), and Finite Element Method
(FEM). BEM has become popular especially in the last decade due to its advantage of
requiring less computation time for the same accuracy. The objective of this study is, by
using Boundary Element Method, to examine different shapes of reinforcement elements
under unit displacement boundary conditions in transversal direction and at perfect
interfacial bonding. The stress variations along the interface of the matrix and reinforcing
material, effective elastic modulus of composites were studied due to different shapes and
different volume fractions Qf reinforcement elements. These calculations were made for
both the internal Representative Volume Element (RVE), and boundary RVE, which are
the internal and boundary cells of composite material respectively. Finally, using én
appropriate failure criterion, the failures of different shapes were examined and also the
effective elastic modulus variations of the shapes durinig the progress of the failure for

both internal and boundary RVE were studied.
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I INTRODUCTION

Composite materials have attracted the attention of researchers for the past
decades because of their beneficial properties that can not be met by conventional metals,
like high specific strength, high specific stiffness, etc. Composite material production is
an important process. This process is a combination of different phases that have been
brought together at certain proportions and at an appropriate processing in order to make
a different material that has better properties than the constituents individually. Many
composite materials composed of two phases, one of which is called the matrix element
and the other is called the reinforcement or the fiber element. These phases come together
at the interface. The matrix material surrounds the reinforcement material, binds the
reinforcement elements, absorbs a small amount of the load, protects the individual fibers
from surface damage, and it behaves as a barrier for the crack propagation. Because of
" these reasons, the matrix material is softer than the reinforcemeﬁt material with some
required ductility.

The properties of the composite materials also depend on the volume fraction of
the individual materials, the orientation of the reinforcement material, the bonding at the
interface etc. Interface failure affects the strength and stiffness of composite materials
significantly.  Furthermore, interface failure is susceptible to transverse loading.
Therefore, this study investigated the interface stress distribution to better understand

possible interface failure initiation and growth and its effect on the composite materials.
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II. BACKGROUND

A. LITERATURE SURVEY

Boundary element method (BEM) has been used more often for the last decade
due to its well-known advantage of reduction of dimension by one. In boundary element
method, instead of whole body, only the boundary neecis to be discretized. With less
computation time, same level of accuracy can be achieved.

Achenbach and Zhu [Ref. 1], using BEM, worked on composites that have only
circular shape fiber, and subjected to a uniform stress in transversal direction. In this
study, an additional very thin interfacial zone was considered, and the calculations were
done for a certain fiber volume fraction, 50%, certain elastic modulus values, 0.7x10°
MPa and 5.5x10° MPa for the matrix and fiber materials respectively, and Poisson’s ratio
for the matrix and fiber materials, 0.33 and 0.25 respectively. The effects of interfacial
zone for the elastic module of both fiber and matrix materials at different stiffness values
without any crack and with some crack length were studied. Without any debonding, the
stress values along the boundary and symmetry line perpendicular to the applied stress
- direction were calculated. It was found that the initiation of the crack would occur along
the interface close to the applied stress. They have also included the effective stress strain
curve of the composite, with and without any interface crack to the study.

Shen, Finot, Needleman and Suresh [Ref. 2], worked on the overall elastic
properties' of two-phased discontinuously reinforced composites as a function of shape
and spatial distribution of the reinforcement using Finite Element Analysis. Like in our
study, the materials were taken to be isotropic and the interface was perfectly bonded. It

was found that circular shape reinforcement element gave the highest effective elastic



modulus and the distribution of the reinforcement for the same volume fraction gave
different effective elastic modulus values, and it was observed that double reinforcement
case with equal volume fraction each gave the lowest effective elastic modulus. The
increase in elastic modulus values increased with increasing concentration of the
reinforcement. They also worked on the effects of particle cracking on effective elastic
modulus of composites, and did not work on debonding of the interface.

Pan, Adams and Rizzo [Ref. 3], conducted a study based on two-dimensional
micro mechanical behavior of fiber-reinforced composites. One of the objectives of the
study was to find the effective elastic moduius variation of the composite material due to
different volume fractions of reinforcement material, and also due to different elastic
modulus ratios of reinforcement material to the matrix material. The interface bonding
was assumed to be both perfectly and imperfectly bonded. The composite material that
has only circular shape reinforcement element with a unit traction boundary condition
was studied using BEM. For the volume fraction, two different volume fractions wére
used; 55 and 70% for the calculations of normalized effective elastic modulus at different
shear modulus values. for the imperfectly bonded interface case, five different stiffness
values for the interface were used and the stress strain curves for the composites and the
stress values along the edge were calculated. It has been observed that the results, for
perfectly bonded model, coincided satisfactorily with physical experiments and FEM.

Another study about micro and macro analysis of composites were made in a five
year research conducted by NASA [Ref. 4] using Best-Cms engineering system based on
BEM program Best3d. In Chapter VII of the research, effective elastic modulus of the

composite were studied using specific elastic modulus and Poisson’s ratios for the




materials. in the study, circular shape reinforcement was used for single and multiple
cases which were subjected to tension and shear in the direction parallel and
perpendicular to the fiber. The results were plotted for effective elastic modulus vs. fiber
volume fraction values between 0 and 30%. Also, in the same chapter, the effect of fiber

Poisson’s ratio in the composite material was studied.



B. OBJECTIVES

The objective of this study was, by using boundary element method, to find out
fiber/matrix interface stress distribution for a perfectly bonded interface, due to its
importance for interfacial debonding. Micro mechanical models for four different shapes
of reinforcements; different reinforcement volume fractions, and different shear modulus
ratios of fiber to matrix materials were modeled. The study was made for both internal
and boundary RVEs of the composite material, because the inner and the boundary cells
of the composite material respond differently and give different stress distributions from
each other. This study .also included the effect of interaction of different size and/or
orientation of reinforcements along the interface stress. Furthermore, the effective elastic
modules values were calculated for the cases without debonding and at different
debonding ratios. Other than single reinforcement case for a cell of the composite,

double reinforcement case was also studied at two different cases, and the same analysis

was conducted for this case also.




III. BOUNDARY ELEMENT TECHNIQUES

A. FORMULATION

The equations of equilibrium in 2-D solids is:

Gy +bi =0 i,j=1,2 | 3.1
where G;; is the stress tensor and b; is a body force. Boundary conditions associated with
the differential equations are:

t=o.n =f onT, ij=1,2 (3.2)
u, =, on I, orij=1,2 (3.3)

where I, N"I', =& and I', UT, =T". Here I represents the total boundary of the solid.
Applying the weighted residual method to Eq. (3.1) yields:

[0, +b)ujd2=0 | (34)

Q

in which u; is the test function. Applying integration by parts to the first product term in

Eq. (3.4) results in:

L)

[bu;dQ- i o u;,dQ+ [0 yn uldl =0 (3.5)
Q r .

Here n; is the direction cosine at the boundary with outward direction positive.

Knowing that:

o, = —;:(O'ﬂu;j +ou;,)=0,; %(u:j +u;,) =08 (3.6)
and strain tensor is symmetric, Eq. (3.5) becomes:

[bu;d@~[o e;dQ+ [0 nudT =0 (3.7)

Q Q r



Use of 0,&; = 0,€; = 0,u, ; and integration by parts to Eq. (3.7) yields:

Jing
[b;dQ +[bu,c’ A0~ [un,05dT +[ 0 yn udl =0 (3.8)
Q Q r T
or
[bu;dQ+ [uo}, 42~ [wtdl+ [tu;dT =0 (3.9)
Q Q r r
where traction ¢, =0 ;n;.
Define o, ; such that:
o, ==6,x=-8) (3.10)

where &, (x—¢) is the Dirac delta function and represents a unit load at g inthe n

direction. Then Eq. (3.9) becomes:

[burdQ@-u, (&) - [utdT+ [tudl =0 (3.11)
Q r T

or

ur (= u,(§)+ [utydl =[tudl + [bu,dQ (3.12)
r r Q . .

where ¢, and u,, are the tractions and displacements in the i direction due to a unit force

acting in the n direction. This is the boundary integral equation to be discretized along

the boundary.

The solution satisfying Eq. (3.10) with the plane strain condition is:

. 1 1 or or
= 1 B=-4v)In(=)d . + —— 3.13
Wi 1G(1-v) l:( Y) n(r) " oox, Bx,.] ( )

and




in:

or

n i

. 1 or or or or or
e T2, + 12 o ,
i 47[(1—V)r{8n {( V)Ou +axn ax,} a V)(ax " ox " H (3.14)

Discretizing the boundary with a number of elements with no body force results

Cru™ +jt*udr=ju*tdr T (3.15)
r r
NE NE

Cmu™ + Y Hyu; =3 Gyt | (3.16)
j=1 j=1

Eq. (3.16) can be written as:
[HI{U} = [GHT} (3.17)

The details can be found in Reference 5.



B. MODELING

In composite materials, the cross-sectional shapes of reinforcement are not
uniform. However, in real applications, it is neither pbssible nor practical to get their
exact shapes. Thus, modeling the reinforcement material in a certain shape makes the
calculations much easier. In this study, four different reinforcement shapes were studied,
which are; circular, diamond, octagonal and square shapes (See Figure 3.1). For the
circular shape of reinforcement, volume fraction was varied from 20 to 70 percent for
different volume fraction and shear modulus ratio study. For comparison of different
shapes and other cases, 40 percent volume fraction was used.

For the modeling of single reinforcement case, only one cell of the composite
material, that has one reinforcement material at the center, was selected. Since it is
symmetric about its vertical and horizontal axis, only one quarter of it was taken for
simplicity (See Figure 3.2). The outer dimensions of the model were taken as unity, and
the dimensions of the reinforcement elements were calculated due to their volume
fractions.

The node numbering was done for each material separately, starting from
reinforcement material in counterclockwise direction and, followed by the matrix
material. After the node numbering, the x and y coordinate values for each node were
assigned. The elements, connecting the nodes were numbered in the same way. Then, the
numbered elements were connected by the nodes on each side of the corresponding
elements. The elements along EF in the Figure 3.2 are the interface elements, where the
matrix and the reinforcement materials meet. The rest of the elements are the boundary

elements.
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The calculations were done for both internal and boundary Representative
Volume Elements (RVE). According to the BEM program, code 0 means displacement
and code 1 means traction. The boundary conditions were applied only to the boundary
elements not to the interface elements. The applied boundary conditions are as follows
(See Figure 3.2):

t.=0,u, =0 along AE and EB
,=0,t, =0 along BC (BG and GC in Figure 3.3)

t. =0,u, =1 along CD (CH and HD in Figure 3.3)

x y
u,=0,¢t, =0 along AF and FD

Along AE and EB of the composite material, due to symmetry there is no
displacement in y direction. BC is the traction free surface for boundary RVE. For
internal RVE, the elements along BC were moved same amount to the left along x-axis to
maintain the symmetry with the next cell. CD is the boundary where unit displacement
was applied. Along AF and FD, there is no displacement in x direction due to symmetry.

For the modeling of double reinforcement, only circular shape reinforcement was
modeled for two cases. For the first case, each of the reinforcement had 20 percent
volume fraction, and in the second case, one had 30 percent, the other had 10 percent
volume fraction. Like in single reinforcement case, one quarter of the cell was taken
because of symmetry (See Figure 3.3). The outer dimensions of the model, node
numbering, connectivity, element numbering, boundary conditions were taken the same
like in single reinforcement case. The dimensions of the reinforcements were calculated

due to their volume fractions. In this case, there were two interfaces, EF and GH in

11



Figure 3.3. The calculations were made only for internal RVE and the stress values along
the interfaces were calculated separately. |

The Poisson’s ratios of the reinforcement element and the matrix element were
taken as 0.3 and 0.49 respectively for the study of stress and failure analysis. But, to
compare the results of this study with some other studies, 0.22 fér the reinforcements and
0.35 and 0.45 for the matrix material were used.

The interface elements, which are the elements of whose stress values are to be
calculated, were entered to the main program separately.

The boundary element numbers, the total element numbers, the interface element
numbers, the number of different zones, the last node of each zone, the coordinates of the
nodes, the element connectivity, and thf: interface element numbering are calculated
using Matlab progfamming. All the required data were gathered together in the output file
of the Matlab program. This output file was used as an input file for the BEM calculating

program. The results were discussed in the following chapters.

12
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Figure 3.2: Modeling Demonstration of Circular Shape for Single Reinforcement
Case.
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(DOUBLE REINFORCEMENT CASE)
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Figure 3.3: Modeling Demonstration of Double Reinforcement Case for Circular
Shape Composite Material.
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IV. NUMERICAL SOLUTION VERIFICATION

A. SOLUTION VERIFICATION

First of all, the formulation and computer program was checked by comparing the
numerical result to a known analytical solution [Ref. 6]. The selected problem was an
infinite plate with a circular reinforcement (See Figure 4.1). The plate had a circular hole
at the center and was subjected to a uniaxial tensile load. A circular plate of the same
size as the hole in the infinite plate was inserted into the hole. The case was considered to
have perfect bonding (welding) at their interface.

The analytical solution is given below [Ref. 6]:

o - J;i[ﬂo +6,Co526) (Normal stress) 4.1)
P 670 2

O o= 5 B+ Fr -8, (Cos26 (Hoop stress) 4.2)

o =P|3%0,2_5 lsinog (Shear stress) 4.3)

The variable R represents the radius of the hole inside the infinite plate, and the variable r
represents the radius of the plate that was welded into the hole. The variables that have 0

subscript represent the variables of the reinforcement element.

4= A+3U = E, . p__ Mx+) . 7,=0
\Atp ) 70 20ibvg) 7 2pp+p(-Y)
50=M,ﬂ:_E_, 1= EV @.4)

U+l X 2(1+v) (1+v)1-2v)

17



Furthermore, substitution of Equation (4.4) into Equations (4.1) and (4.3) yields

the following normal and shear stresses at the interface:

_ _B li Ky (Z'H) + Ho (Z"'l) Co Szg} (Normal stress) (4._5)

2| 2pe+u(xo-1) et

0 =£|: Ho (Z+l) +'u 0 (Z-H) Co S29:| (Tangential stress) (4.6)
2| 2p+1(xo-1) Koy

The same problem was solved using the boundary element method. The infinite
plate was modeled as a large square plate whose dimension was much greater than the
hole size. The hole size was 1/10 of the plate dimension. Only one quarter of the
geometry was solved because of two symmetric axes as shown in Figure 4.1. Ten
constant elements were used along each interface, respectively, and 160 elements were
used along the rest of the boundary. The boundary ABC in Figure 4.1 has no vertical
displacement and no tangential traction while boundary AFE has no horizontal
displacement and no tangential traction because of symmetry. Furthermore, boundary
DE has a unit uniform normal traction with zero tangential traction. Finally, boundary
CD is free of traction in both normal and tangential directions. Along the interface
boundary BF, stress and displacement continuity conditions were applied. In case of
perfect welding, those continuities were maintained in both normal and tangential
directions while the no-friction case, only the normal continuity condition was enforced

with zero tangential traction.

18




The numerical solutions were compared to the analytical solutions in Figure 4.2.
Both normal and tangential stresses at the interface were plotted in the figure as a
function of the angle measured from the x-axis (See Figure 4.1). The angle varied from 0
to 90 degrees. The numerical solutions agreed well with the analytical solution.
Especially, the normal stresses had a better agreement. The interface normal stress is in
maximum tension along y-axis and in maximum compression along x-axis because of
Poisson’s effect. Poisson’s ratio of the matrix element is greater than the Poisson’s ratio
of the reinforcement element, thus, contraction in the matrix element is greater than the
reinforced material. This causes compression at the interface at lower angles. The
tangential (shear) stress is the maximum in magnitude at the interface location of 45
degrees. In the same Figure, (Figure 4.2) at 45 degrees, the normal stress has 0.5 value
which is the average of the maximum and the minimum normal stresses (principal
stresses). In the tangential stress plot, there is a slight difference between analytical and
numerical solutions. At 0 and 90 degrees at the interface, the tangential stresses have to
be zero because of the symmetry, and the analytical solution agrees with this but there is
a slight difference in the boundary element solution. This is because numerical methods
do not give exact solution, but approximate solution. However, they have very close
solutions. This comparison showed that the boundary element fnethod gi\}es pretty good

and reliable results for this study.

19



B. DIFFERENT NUMBERS OF ELEMENTS

In the analysis of boundary element method, different numbers of elements were
tried at the interface, where all the attentions were focused. For the circular shape
reinforcement element having 40 percent volume fraction in the cell, four different
numbers of elements were used at the interface; 10, 40, 60, 80. As the boundary
condition, unit traction boundary condition was used. Normal and tangential stresses
were calculated at the interface, and the results were plotted in Figs. 4.3 and 4.4. In the
comparison of these different numbers of elements, all cases give almost identical results,
except 10 elements. 10 elements give very slightly different results from the others. As a
result of this comparison, 40 elements, having the same result with the a less computation
time, were selected along the interface of different shapes and different volume

calculations.

20




Applied Load

Figure 4.1: Unit Cell of a Composite Material that has a Circular Shape
Reinforcement Element.
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V. RESULTS WITHOUT DEBONDING
A. DIFFERENT SHAPE OF REINFORCEMENT ELEMENTS

Four different shapes of reinforcement as shown in Figure 3.1 were analyzed and
compared in this section. Each reinforcement had the same volume fraction as 40
percent, and shear modulus ratio (reinforcement modulus/matrix modulus) of 100. For
each shape of reinforcement, both the internal RVE and the boundary RVE were studied.
Figs. 5.1 and 5.2 show the normal and tangential stress along the interfaces for the
internal RVE, respectively. The stress values were normalized by the average normal
stress of the circular shape reinforcement element. Figs. 5.3 and 5.4 show the same kind
of stresses for the boundary RVE with the same normalization. The horizontal axis in the
figures indicates the angle 8 from the x-axis along the interface as illustrated in Figure
4.1.

For all cases, the normal stress was greater than the tangential shear stress at the
interface in terms of the magnitude. For a reinforcement shape with a sharp corner(s),
there was a stress concentration as expected. (These high stress values may not exist as
the corner becomes rounded.) Other than the stress concentration at corners, the normal
stress was larger around the upper section of the interface (i.e. near 8=90) and it was a
tensile stress as expected. The normal stress was in compression at the interface section
close to the x-axis (i.e. 6=0) for the internal RVE because the Poisson’s ratio of the
matrix material was greater than that of the reinforcing material. For the boundary RVE,
on the other hand, the interface normal stress close to the x-axis almost vanished because

of the traction-free boundary effect.
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For reinforcement in a polygonal shape like square, octagon, diamond, the normal
stress distribution was approximately constant along each linear segment of interface for
the internal RVE except for the corner effect. The normal stress level increased from
compression to tension as each linear segment became farther from the horizontal axis.
Thus, the square shape reinforcement resulted in a two-step variation of normal stress,
and the octagonal shape yielded a three-step variation. The diamond shape had an
approximately constant stress variation except for two corner regions. Therefore, as the
number of linear segments increases, the normal stress distribution is expected to
approach to the normal stress distribution of circular reinforcement.

Among the four different shapes, the square shape had the largest tensile normal
stress even not including stress concentration so that it might have a greater chance of
interface debonding compared to other shapes. More detailed discussion for debonding is
given in the next chapter. The circular and diamond shapes had lower normal stresses
(except for the two corner zones in the diamond shape) compared to others. This implies
that those shapes may have a less chance for interfacial debonding.

The interface stresses in the boundary RVE were generally lower than those in the
‘internal RVE. For example, the normal stress for the square reinforcement was about 50 .
percent greater for the internal RVE, and approximately 25 percent for other shapes. It is
expected that interface debonding may occur inside of a composite rather than at the
boundary of the coﬁposite. For the boundary RVE, the normal stresses for polygonal
shapes also show stepwise distributions along the interfaces, and they were almost
negligible on the interface elements located from 6=0 to about 45 except for the square

shape of reinforcement that has stress rise at the corner.
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The shear stresses vanished at 8=0 and 90 for all shapes except for the diamond.
For the internal RVE, the shear stress distribution is quite symmetric about 6=45, while it
is unsymmetrical for the boundary RVE and has a shift toward 0=90. If the stress

concentration cites were neglected, the peak shear stresses for four different shapes

would be close to each other.
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B. VOLUME FRACTIONS

For the present analysis, only the circular shape reinforcement was used for
different volume fractions. The reinforcement volume fraction varied from 20% to 70%.
In addition, three different shear modulus ratios between the reinforcing material and the
matrix material were considered and they were G,/G,,=10, 100, or 1000, wheré G denotes
the shear modulus and the subscripts » and m indicate the reinforcing and matrix
materials, respectively. The reason for using shear modulus ratios instead of elastic
modulus ratios was because the shear modulus values were used directly for the BEM
calculations even though elastic and shear moduli were related to each other with a
known Poisson’s ratio. For the different volume fraction calculations, the results were
calculated for the same Poisson’s ratios.

Normal and tangential stresses along the interface were calculated and the results
were plotted for different volume fractions and shear modulus ratios in Figs. 5.5, 5.6, 5;7,
5.11, 5.12 and 5.13 for internal RVE, and 5.8, 5.9, 5.10, 5.14, 5.15 and 5.16 for boundary
RVE. The stresses were normalized by the average normal traction values along the
boundary of their own where boundary conditions were applied.

For the uniform displacement boundary condition equivalent to a unit average
traction along the boundary, Figure 5.5 shows that the reinforced composite has almost
the same normal interface stress distribution regardless of the reinforcement volume
fraction if the shear modulus ratio between the reinforcing and matrix materials is not
high for internal RVE (i.e. G/G»,=10). For the boundary RVE, the results are close to
each other but not as much like as in internal RVE. As the shear modulus ratio increases

to 100 and higher as shown in Figs. 5.6 and 5.7 for internal RVE, and in Figs. 5.9 and
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5.10 for boundary RVE, the interface normal stress variation becomes different for
different reinforcement volume fractions for both internal and boundary RVEs. A higher
volume fraction shows a greater fluctuation in the normal stress and a higher tensile stress
values at the interface of around 6=90. As long as the shear modulus ratio is about 100 or
higher, the normal stress is almost independent of the modulus ratio. (See the comparison
between Figs. 5.6 and 5.7, and between 5.9 and 5.10).

For internal RVE, the interface shear stréss shows large variations among
different reinforcement volume fractions with symmetric results about the interface at

0=45. A lower reinforcement volume fraction results in a higher shear stress at the

location at ©=45. At 40% volume fraction, the shear stress shows a more or less flat
plateau at the peak value. However, as the volume fraction becomes 60% or 70%, the
stress plof shows double peaks as seen in Figs. 5.11 through 5.13. Like the normal stress,
the shear stress is not affected by the shear modulus ratio as long as the ratio is about 100
or higher. Those are for the internal RVE.

For boundary RVE, the shear stress distribution is different for each volume
fractions but not as much as those of internal RVE, and the results don’t show symmetric
distribution. The peak values are seen at about 55-75 degrees. Differently from internal
RVE, 40% volume fraction shows the highest maximum tangential shear stress for all
shear modulus ratios (See Figs. 5.14, 5.15 and5.16). At higher shear modulus ratios, like
internal RVE, the shear stress is not affected by the shear modulus ratios (Compare Figs.

5.15 and 5.16).
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C. EFFECTIVE ELASTIC MODULUS

In this section, the effective composite elastic moduli were computed for different
shapes and volume fractions of reinforcements. Figs. 5.17 and 5.18 plot the normalized
effective modules as a function of the reinforcement volume fraction for different ratios
of the shear moduli between the reinforcing and matrix materials. When the shear
modulus ratio is 10, the effective modulus shows an approximately linear variation
depending on the reinforcement volume fraction. However, as the shear modulus ratio
becomes higher, the effective modulus variation becomes nonlinear for different volume
fractions. In particular, the slope of the effective modulus variation gets greater as the
volume fraction or the shear modulus ratio increases. When the Figs. 5.17 and 5.18 are
compared, it is seen that the effective composite elastic modulus values for the internal
RVE are greater than those of boundary RVE. As the shear modulus. ratios between
reinforcing and matrix material increase, the difference between the internal and
boundary effective composite moduli gets higher.

The effective elastic moduli for four different shapes with G=1000, G,=10,

v=0.3, vp;=0.49, and 40% reinforcement volume fraction were listed in Table 1:

Table 1. The effective composite elastic modulus results for four different shapes.

Eetr Square Octagonal Circular Diamond
Boundary RVE 4.8374 3.6018 3.4639 3.4379
Internal RVE 6.9787 49773 4.7242 47146
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As seen from the results, in general they are higher for internal RVE, and square shape
reinforcement element gives the highest results among them for both internal and
boundary RVEs, and the circular and the diamond shapes gives the lowest.

Because there was a big difference between the square shape and others in terms
of the effective moduli, the four shapes were analyzed for a case with known
experimental data [Ref. 7]. This time, G=29.96 GPa., Gn=1.28 GPa., v,=0.22, v;,=0.35,
and 40% reinforcement volume fraction were used, and the results are listed in the table
2. The results were calculated for both internal and boundary RVEs as well as using
other analytical models [Refs. 8 and 9]. As seen from Table 2, the results for four
different shapes were a little higher than those of other data for both internal and
boundary RVEs. The internal RVE results are between 6-8% higher than boundary RVE
results. The boundary RVE results are closer to the other data.

From Table 1, it was observed that the square shape reinforcement gave a 35-40%
greater effective modulus than other shapes. However, Table 2 shows more comparable
values between the square and other shapes. In order to identify what causes this
difference in Table 1, five different cases were studied at different shear moduli and
Poisson’s ratios and the results were tabulated in Table 3. In the table, for the same shear
modulus ratios (G=1000, G,=42.72), higher Poisson’s ratios for reinforcing and matrix
material give much higher effective elastic modulus values for the square shape. On the
other hand, when the Poisson’s ratios of both material remained the same

(v,=0.22,v, =0.35), different shear modulus ratios give very close effective elastic

moduli for the four shapes. Another comparison was made by taking the Poisson’s ratio

of one material constant and decreasing the other material’s Poisson’s ratio. When the
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Poisson’s ratio of the matrix material was constant (v;=0.49), the decrease in reinforcing
material from 0.30 to 0.22 gives very small different résults, about 1% difference.
However, when the Poisson’s ratio of reinforcing material was constant (v;=0.30), the
decrease in matrix material from 0.49 to 0.45 gives quite different results, about 15-25%
less than the first results. This result concludes that the Poisson’s ratio of matrix material
plays a critical role for the effective composite elastic modulus. For all the cases listed in
Tables 1, 2, and 3, the effective elastic moduli for the square shape reinforcement were
higher than other shapes’ values. When the x and y traction values for the interface
elements were examined, it is seen that the overall traction values in the x direction for
square shape were higher than the other shapes’ values for the same shear modulus and
Poisson’s ratio values. This means that the square shape reinforcement resists to the
shrinking matrix material with a higher stress value than the other shapes.. This causes a
counter effect of Poisson’s effect, and makes the composite material stiffer. In Table 3,
although the shear modulus ratios and Poisson’s ratios are different from each other, the
effective elastic moduli for four different shapes coincide with the results in the study
conducted by Shen, Finot, Needleman and Suresh [Ref. 2] in the qualitative sense. Their
study used particle reinforcement rather than fiber reinforcement. Thus, it can be stated

that the particle or fiber reinforcement give the same resuits qualitatively.
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Table 2. The comparison of four shapes with different formulation for 40%

reinforcement volume.
Composite Elastic Modulus G=29.96, G,,=1.28 G=29.96, G,=1.28
(Ec) v, =022,v, =035 v, =022,v, =035
(Gpa) (Boundary RVE) (Internal RVE)
Experimental Results
2™ order [Ref. 7] 7.3247 7.3247
Kwon Results
[Ref. 8] 7.6375 7.6375
Circular shape 8.0523 8.5439
Diamond shape 8.5294 9.2564
Square shape - 8.7975 9.3516
Octagonal shape 8.1386 8.7916
Analytical results
[Ref. 10] 6.7587 6.7587

Table 3. The comparison of four different shapes at different shear modulus ratios
and at different Poisson’s ratios.

Eest Square Octagonal Circular Diamond

G=1000
Gn=42.72 5.1931 4.1690 4.0332 3.9464
v=0.30,v;=0.49

G=1000
Gn=42.72 5.1194 4.1314 3.9997 3.8980
v=0.22, vn=0.49

G=1000
Gn=42.72 3.9124 3.3836 3.3121 3.3678
v=0.30,vx=0.45

G=1000
Gp=42.72 2.4945 2.3144 2.2890 2.4250
v=0.22,v=0.35

G=1000
Gn=10 2.7704 2.4984 2.4651 2.6799
v=0.22,vp=0.35
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D. THE STRES AND EFFECTIVE ELASTIC MODULUS RESULTS FOR
DOUBLE REINFORCEMENT CASE

Finally, a double circular reinforcing case was studied without debonding. For
this analysis, two circular shape reinforcement materials that had equal volume fractions,
20% each, and different volume fractions, 30% and 10%, were studied. The reinforcing
material had again 40% total volume fraction. The same material properties as before
were used in this study. For the same boundary condition, normal and taﬁgential stresses
along the interfaces were calculated and the results were plotted for each interface of the
unit cell separately. Figs. 5.19 and 5.20 plot the normal stresses normalized in terms of
the average normal traction values along the boundary caused by the applied uniform
displacement. It is observed that the equal size reinforcement case gave an almost linear
variation of the normal stress along the interface. For- different shear modulus ratios, the

_results were the same. In addition, the results for both interfaces were the same as
expected from symmetry. For the different sizes of reinforcement case, the normal stress
was much higher on the interface of the larger particle than on the interface of the smaller
reinforcement. Not only the magnitude but also the shapes of the normal stresé
distribution were very different between the two different sizes of reinforcement. It is to
be noted that the normal stress along the smaller reinforcement was almost zero if
G,/G»,=10. The peak stress value _for the non-uniform particle sizes was almost twice
greater than that for the uniform particle size. In Figs. 5.21 and 5.22, the normalized
tangential stresses were plotted for equal and different sizes of reinforcement cases
respectively. In Figure 5.21, the equal size reinforcement case gave the same results for
both interfaces, and for different shear modulus ratios the results were close to each othef.

For the different sizes of reinforcement case, the results for different shear modulus ratios

34




were quite different from one another. Again the non-uniform sizes of reinforcement
gave much higher stresses than the uniform size. Like the previous stress distributions,
the larger reinforcement in the non-uniform sizes of reinforcement case gave the highest
shear stress values.

Finally, the effective elastic moduli were calculated for each case with three
different shear modulus ratios. The effective moduli were normalized by the elastic
moduli of the matrix material. The results were tabulated in Table 4. As seen from the
table, the normalized effective elastic moduli is the highest for G,/G,=100 among others.
However, the non-normalized effective modulus increases along with the increasing
reinforcement shear modulus as expected. As seen from Tables 1 and 4, the elastic
modulus for the single reinforcement of f:ircular shape is greater than those for double
reinforcement cases. Furthermore, different sizes of reinforcement resulted in a smaller
effective modulus than the same size of reinforcement. These results coincide with the

results conducted by Shen, Finot, Needleman and Suresh [Ref. 2].

Table 4. The normalized elastic modulus values for double reinforcement cases.

Eer (E/Em) G/Gp=10 G/Gr=100 G/Gr=1000

R,=0.5046, R,=0.5046

(20% each) 2.1644 2.3892 2.2819

R;=0.6180, R,=0.3568

(30% +10%) 2.0870 | 2.2359 2.0503
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FigureS.l: The Normal Stresses Along the Interfaces of Different Shapes, Normalized
by Average Normal Stress of Circular Shape Reinforcement for Internal

RVE (G/Gpr=100).
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Normalized by Average Normal Stresses Along the Boundary of each

Figure 5.14: Tangential Stresses Along the Interfaces of Four Different Volume Fractions
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VI. RESULTS WITH INTERFACE DEBONDING
A. INTERFACE FAILURE CRITERIA

In the analysis of interface debonding, the Quadratic Failure Criterion [Ref. 10]
was used as the failure criterion, which has been commonly used for composite materials.

The Quadratic Failure Criterion is expressed below;

2 2
Oy | 491 ¢ (6.1)
Sy St _

where Oy and Ot are normal and tangential stresses at the interface , Sy and St are the

normal and tangential failure strength at the interface. The normal stress On can be

either tensile or compressive. Accordingly, proper normal failure strength Sy should be
used depending on the status of the normal stress. In general, interface failure occurs
much easily under tensile normal stress than compressive normal stress. That is, the
normal strength Sy is much greater for compression than for tension. As a result,
interface failure under compressive normal stress was not considered in this study. In
addition, as an approximation, St is taken to be a half of Sy as usually assumed in a

homogeneous isotropic material. Using this assumption, Equation 6.1 is transformed into

o, =\Jo2 +407 <5, (6.2)

This expression has one strength value at the interface. The equivalent stress Geq was
computed along the interface and progressive interface debonding was determined by the
magnitude of the equivalent stress. In other words, interface debonding was assumed to

occur at the location of the largest value of the equivalent stress. Once interface
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debonding occurred, the debonded elements were assumed to be traction-free boundary
elements assuming there was no friction at the interface after debonding. Then, the

equivalent stress was recalculated and the previous process continued.




B. COMPARISON OF FAILURE STRESSES AND DEBONDING OF
DIFFERENT REINFORCEMENT SHAPES
In the following study, the reinforcing material had a volume fraction of 40
percent and the shear modulus ratio of the reinforcement to the matrix material was 100.
The failure criterion was also applied to four different shapes; circular, square, diamond
and octagohal shapes. The equivalent stresses were plotted along their interfaces (See
Figs. 6.1 and 6.2) for both internal and boundary RVEs.

From Figs. 6.1, and 6.2 , it is seen that, the sharp corners with stress concentration
are the debonding initiation cites. It is also believed that even though the corners are more
or less smooth as expected in a real composite, the stress at the comers are still greater or
equal to the stresses at the rest of the interface. Those statements were the same for both
internal and boundary RVEs.

Among the four shapes, the square shape of reinforcement had the highest chance
of initiation of interface failure with or without stress concentration effect at the corner.
The other three shapes showed close equivalent peak stress values except for the stress -
concentration. In other words, the three shapes might have initial interface failure under
the almost same magnitude of the load if corners were smooth. Otherwise, the circular -
shape was the safest for interface failure initiation. 'When compared the internal RVE to
the boundary RVE, the square shape indicated that interface failure initiation would occur
at an internal location of a composite rather than at a boundary location. Other shapes
showed a similar trend but the difference between internal and boundary RVEs was
smaller than that for the square shape. Figure 6.3 shows the possible location of interface

failure initiation and the direction of progressive failure for four different shapes.
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After the initiation, it was observed that the debonding progressed along the
neighboring horizontal and inclined interfaces until all these horizontal and inclined
interfaces separated. The reason for this is, after every debonding, the stresses on the
neighboring elements grow significantly and cause them to exceed the failure criterion
until the debonding reaches the vertical interface elements of either square or octagonal
shape. When the debonding reaches the vertical elements, the tensile stresses on these
elements turn out to be compressive, and keeps the vertical elements from debonding due
to Poisson’s ratio effect, which is greater in matrix element than reinforcement element.
Consequently, square shape reinforcement element will have maximum 50 percent and
octagonal shape reinforcement element will have maximum 75 percent debonding (See
Figs. 6.4 and 6.5). This situation is different for diamond and circular shape
reinforcement elements. Although the diamond shape has one inclined interface, it has
maximuin about 50 percent interface failure. The circular shape has maximum 85 percent
debonding (See Figs. 6.6 and 6.7). Both internal and boundary RVEs showed similar
results as discussed above except for the diamond shape. This shape showed about 90
percent debonding along the interface for the internal RVE while about 50 percent for the
boundary RVE. The reduced effective elastic modulus variation for both internal and
boundary RVEs gave very close results for each shape of reinforcements individually. A
slight exception to that was, the circular shape gave slightly different results between 15
and 50 degrees for internal and boundary RVEs.

The analysis of reduced effective elastic modulus variation using the internal
RVE shows that circular and diamond shape reinforcements have close values of the

effective elastic module at different debonding ratios. Although the square shape
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reinforcement has minimum overall debonding, it shows the stiffest reduction in the
effective elastic modulus (Figure. 6.8). This shows that, although the vertical interface
section does not separate due to compression, it does not have major effect on the
effective elastic modulus as much as inclined interface section. For the boundary RVE,
the circular and octagonal shapes had similar reduction of effective moduli at a given

debonding ratio as shown in Figure 6.9.
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C. FAILURE CRITERIA OF COMPOSITES FOR MULTIPLE

REINFORCEMENT CASE

In the analysis of multiple reinforced composite materials, double circular shape
reinforcements were studied for three different shear modulus ratios. In one of the two
different cases the reinforcements had 20% volume fractions each, and in the second one,
the reinforcements had 30% and 10% volume fractions. The same failure criterion, which
was used for single reinforcement cases, was used for multiple reinforcement case also.
The failure stresses for unit displacement boundary condition were plotted for each case
and three different shear modulus ratios in Figs. 6.10 and 6.11. The vvalues were
normalized by the average failure stress value of the single circular reinforcement
material for a better comparison. From the plots, it is observed that the stresses along the
interface of the reinforcement of the larger size are 50% higher while the stresses along
" the interface of the reinforcement of the smaller size are 50% lower when compared to
the stresses along the interface of the reinforcement with a 20% volume fraction. So, it is
obvious that the failure will initiate along the interface of the reinforcement material that
has higher volume fraction. Consequently, if the two cases are compared to each other for
the same total reinforcement volume fraction, equal size reinforcements had lower failure

stresses and higher effective elastic modulus than the different sized reinforcements.
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Figure 6.3: Debonding Initiation and Progress Cites for Different Shapes of
Reinforcements, shown as Stars and Arrows.
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Element at Different Debonding Ratios for Internal and Boundary RVEs.
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Figure 6.8: The Effective Elastic Modulus Variation of Four Reinforcement Shapes

During the Progress of Failure for Internal RVE.
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Figure 6.11: The Failure Stresses Along the Interfaces of Different Size Reinforcement
Elements (30% and 10%), Normalized by the Average Failure Stress of
Circular Shape Reinforcement for Three Different Shear Modulus Ratios.
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VII. CONCLUSIONS AND RECOMMENDATIONS

Some of important results from the present analysis are summarized below:
1. The stress values along the interfaces of intemalv RVEs are higher than those of
boundary RVES. Therefore, interfacial debonding may occur at inside of the composite
material rather than the outside boundary. Among different shapes considered here, the
square has the highest interface failure stresses even if the effect of stress concentration at
the corner is not considered.
2. The interface normal stress distribution was approximately constant for each
linear segment of the interfaces of square, octagonal and diamond shapes if the stress
concentration is discarded. As the number of linear segments of a polygonal shape of
reinforcement increases, thé normal stress distribution should approach to that for the
circular shape of reinforcement.
3. It was observed that Poisson’s ratio of the matrix material played a very important
role in the effective elastic modulus of a composite. A small change in Poisson’s ratio of
the matrix material causes a big difference in the elastic modulus of a composite material.
The change in the shear modulus ratio of the reinforcement to the matrix materials
(G/Gy) does not affect the effective elastic modulus of the composite material very much
after a certain threshold value of the ratio if the reinforcement volume fraction is
relatively low.
4, The normalized normal stress distribution along the interface has a small variation
for different reinforcement volume fraction when the ratio (G,/G,,) is 10. The variation is
smaller for the internal RVE than for the boundary RVE. However, there is more

dramatic difference in the shear stress distribution among different reinforcement volume
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fractions. When the ratio (G/G,) is 100 and beyond, the normalized normal and shear
stresses remain almost the same regardless of different ratios of (G/Gm) for each
reinforcement volume fraction.

5. Although the square shape reinforcement material gave the highest effective
elastic modulus, it was the most susceptible shape to go under debonding initiation and
progress, and gave the stiffest reduction in the effective elastic modulus during the
progress of failure. Th¢ circular shape was the least for debonding initiation.

6. For the same fiber volume fraction, the single reinforcement case gave a higher
effective elastic modulus than the double reinforcement case, and within double
reinforcement cases, the equal size reinforcement gave a higher effective elastic modulus
than different size reinforcements. In terms of the interface stresses, the single
reinforcement has the largest stress, and the two equal sizés of double reinforcements
have the smallest stress. That is, the single reinforcement model is stiffer but more
susceptible for interface damage.

This study can be extended to model more multiple reinforcements and
orientations. The shapes used in this study can be re-analyzed by rounding their corners.
Interface failure criteria need to be further examined because they are important to
determine potential failure at the interface. Some experimental work is recommended to

evaluate the analytical study conducted here.
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